Left-right symmetry breaking in mice by left-right dynein may occur via a biased chromatid segregation mechanism, without directly involving the Nodal gene
نویسندگان
چکیده
Ever since cloning the classic iv (inversedviscerum) mutation identified the "left-right dynein" (lrd) gene in mice, most research on body laterality determination has focused on its function in motile cilia at the node embryonic organizer. This model is attractive, as it links chirality of cilia architecture to asymmetry development. However, lrd is also expressed in blastocysts and embryonic stem cells, where it was shown to bias the segregation of recombined sister chromatids away from each other in mitosis. These data suggested that lrd is part of a cellular mechanism that recognizes and selectively segregates sister chromatids based on their replication history: old "Watson" versus old "Crick" strands. We previously proposed that the mouse left-right axis is established via an asymmetric cell division prior to/or during gastrulation. In this model, left-right dynein selectively segregates epigenetically differentiated sister chromatids harboring a hypothetical "left-right axis development 1" ("lra1") gene during the left-right axis establishing cell division. Here, asymmetry development would be ultimately governed by the chirality of the cytoskeleton and the DNA molecule. Our model predicts that randomization of chromatid segregation in lrd mutants should produce embryos with 25% situs solitus, 25% situs inversus, and 50% embryonic death due to heterotaxia and isomerism. Here we confirmed this prediction by using two distinct lrd mutant alleles. Other than lrd, thus far Nodal gene is the most upstream function implicated in visceral organs laterality determination. We next tested whether the Nodal gene constitutes the lra1 gene hypothesized in the model by testing mutant's effect on 50% embryonic lethality observed in lrd mutants. Since Nodal mutation did not suppress lethality, we conclude that Nodal is not equivalent to the lra1 gene. In summary, we describe the origin of 50% lethality in lrd mutant mice not yet explained by any other laterality-generating hypothesis.
منابع مشابه
Left-right dynein motor implicated in selective chromatid segregation in mouse cells.
During cell division, copies of mouse chromosome 7 are segregated selectively or randomly to daughter cells depending on the cell type. The mechanism for differential segregation is unknown. Because mouse left-right dynein (LRD) gene mutations result in randomization of visceral organs' laterality, we hypothesized that LRD may also function in selective chromatid segregation. Indeed, upon knock...
متن کاملPIERCE1 is critical for specification of left-right asymmetry in mice
The specification of left-right asymmetry of the visceral organs is precisely regulated. The earliest breakage of left-right symmetry occurs as the result of leftward flow generated by asymmetric beating of nodal cilia, which eventually induces asymmetric Nodal/Lefty/Pitx2 expression on the left side of the lateral plate mesoderm. PIERCE1 has been identified as a p53 target gene involved in the...
متن کاملCilia-Mediated Signalling in the Embryonic Nodes: A Computational Fluid-Structure-Protein Interaction (FSPI) Model
The breaking of left-right symmetry in the mammalian embryo is believed to occur in a transient embryonic structure, the node, when cilia create a leftward flow of liquid. It has been widely confirmed that this nodal flow is the first sign of left-right differentiation; however, the mechanism through which embryonic cilia produce their movement and how the leftward flow confers laterality are s...
متن کاملConserved function for embryonic nodal cilia.
How left right handedness originates in the body plan of the developing vertebrate embryo is a subject of considerable debate. In mice, a left right bias is thought to arise from a directional extracellular flow (nodal flow) that is generated by dynein-dependent rotation of monocilia on the ventral surface of the embryonic node. Here we show that the existence of node monocilia and the expressi...
متن کاملLeft-right determination: involvement of molecular motor KIF3, cilia, and nodal flow.
Mammalian left-right determination is a good example for how multiple cell biological processes coordinate in the formation of a basic body plan. The leftward movement of fluid at the ventral node, called nodal flow, is the central process in symmetry breaking on the left-right axis. Nodal flow is autonomously generated by the rotation of posteriorly tilted cilia that are built by transport via...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2 شماره
صفحات -
تاریخ انتشار 2012